TD : PROGRAMMATION DYNAMIQUE - FLOYD-WARSHALL

TD : PROGRAMMATION DYNAMIQUE
== FLOYD-WARSHALL ==

Remarque : les rappels théoriques sont a la derniére page de ce sujet.

Le fichier source a utiliser pour ce TD est : « TD6 — FloydWarshall.py »

Vous travaillez pour une entreprise de transport ferroviaire qui doit optimiser les trajets
entre différentes gares. Le réseau est modélisé par un graphe orienté ou :

- Chaque sommet représente une gare ;

- Chaque aréte représente une liaison directe avec un temps de trajet ;

- Certaines liaisons ont des temps négatifs (correspondances optimisées, bonus
fidélité).

L'objectif est de calculer les plus courts chemins entre toutes les paires de gares, en utilisant
I'algorithme de Floyd-Warshall.

On utilisera un dictionnaire L pour stocker les valeurs de programmation dynamique sous la
forme L[(k, v, w)]. Le parametre k désigne le plus grand sommet autorisé comme sommet
intermédiaire.

Les données sont déja définies dans le fichier source :

Graphe représenté par un dictionnaire d'adjacence
graphe[v] = [(wl, poidsl), (w2, poids2), ...]
graphe = { -<:>
1: [(21 2)/ (31 4)]/ 4 d
2: [(3, -1), (4, 2)], <:> 3 ‘<:>
3: [(4, 3), (5, &)1, b
4: [(5, 2)1,)
5: [] 2 2
} y 2 :
O——©
Variante avec cycle négatif (pour tests) <:>
graphe_neg = {
1: [(2, 4, (3, 21, / \\\
2: [(41 3)/ (51 4)]/ 2
3: [(21 _1)1 (41 2)1 (514)]1 @ " \ 4 @
4: [(21 _5)1 (51 2)]! \\ 7 /ﬂ
5: [] 4 \ /2
} c 8
——®

TD : PROGRAMMATION DYNAMIQUE - FLOYD-WARSHALL

1) APPROCHE BOTTOM-UP

Dans cette partie, vous implémentez I'approche bottom-up qui calcule systématiquement
tous les sous-probleémes (k, v, w) dans I'ordre k=0, 1, 2, ..., n.

1. Ecrire une fonction poids_arete(G, u, v).
Cette fonction retourne le poids de I'aréte u — v si elle existe, sinon np.inf.

Tester : >>> poids_arete(graphe,1,2)
2
>>> poids_arete(graphe,1,3)
4
>>> poids_arete(graphe,1,4)
inf

2. Ecrire une fonction initialiser_L0(G).
Cette fonction initialise et retourne le dictionnaire L contenant tous les cas de base k=0
(voir les rappels théoriques a la fin du sujet).

Tester : >>> | = initialiser_LO(graphe)
>>> L[(0,1,1)]
0
>>> L[(0,1,3)]
4
>>> L[(0,1,5)]
Inf

3. Ecrire une fonction floyd_warshall_bottomup(6).
Cette fonction calcule toutes les valeurs L[(k, v, w)] pour v, w € V a partir des valeurs au
niveau k = 1, en appliquant la récurrence et détecte également un cycle négatif pendant
les itérations.
Elle retourne (dist, False) oudist[(v, w)] = L[(n, v, w)] siaucun cycle négatif
n’est détecté, et retourne (None, True) dans le cas contraire.

Tester: >>> L =initialiser_LO(graphe)
>>> dist, cycle_negatif = floyd_warshall_bottomup(graphe,L)
>>> dist[(1,5)]
5
>>> cycle_negatif
False
>>> L = initialiser_LO(graphe_neg)
>>> dist, cycle_negatif = floyd_warshall_bottomup(graphe_neg,L)
>>> dist
>>> cycle_negatif
True

TD : PROGRAMMATION DYNAMIQUE — FLOYD-WARSHALL

4. Affichage (comparaison) : le fichier source fournit une fonction AfficheTable(L,G) qui

affiche les tranches pour chaque valeur de k. En bottom-up, toutes les cases existent a
chaque k.

Graphe sans cycle négatif :

Table de programmation dynamique Floyd-Warshall

k=1

Origine (v)
Origine (v)
w
Origine (v)

Destination (w) Destination (w)

Destination (w)
k=3 k=4

k=5

Origine (v)
Origine (v)
w

Origine (v)

Destination (w) Destination (w) Destination (w)

Graphe avec cycle négatif (détecté a k = 2) :
Table de programmation dynamique Floyd-Warshall
k=1

Origine (v)
Origine (v)
Origine (v)

1 2 3 4 5
Nestination (w)

Destination (w) Nestinatinn (w)

5. Questions théoriques (complexité).
a) Combien de sous-problémes (k,v,w) sont calculés pour un graphe a n sommets ?
b) En déduire la complexité temporelle et la complexité spatiale.
c) Le cours mentionne une version bottom-up optimisée en mémoire a O(n?). Donner
I’équation de récurrence a utiliser dans ce cas.

TD : PROGRAMMATION DYNAMIQUE — FLOYD-WARSHALL

1) APPROCHE TOP-DOWN AVEC MEMOISATION

Dans cette partie, vous implémentez la version récursive avec mémoisation (top-down).
L'idée est de calculer un sous-probleme seulement lorsqu’il est demandé, et de mémoriser le
résultat dans un dictionnaire.

1. Ecrire une fonction floyd_warshall_topdown_paire(G, v, w).
Cette fonction calcule uniquement la distance optimale pour une paire (v, w) via une
fonction récursive f_rec(k, a, b) etun dictionnaire L de mémoisation.
On inclut une détection précoce de cycle négatif : lever une exception « Cycle Négatif
Détecté ».

def floyd_warshall_topdown_paire(G,v,w):
L = {}

def f_rec(k,a,b):
Mémoisation

Cas de base k ==

return L[(k,a,b)]

n = len(G)
return L, f_rec(n,v,w)

Tester :
>>> L, dist = floyd_warshall_topdown_paire(graphe_neg,2,4)
TypeError: Cycle négatif détecté

>>> L, dist = floyd_warshall_topdown_paire(graphe,2,4)

>>> d iSt Table de pragrammation dynamique Floyd-Warshall
>>> 5

>>> AfficherTable(L, graphe)

k=0 k=1 k=2

origine (v]
w

g
Eow

Origine (vh
origine (vi
w

TD : PROGRAMMATION DYNAMIQUE — FLOYD-WARSHALL

2. Ecrire une fonction floyd_warshall_topdown_toutes_paires(G).
Cette fonction calcule toutes les distances en réutilisant le méme dictionnaire L pour
tous les appels récursifs, puis retourne (dist, cycle_negatif, L). Si cycle_negatif est
True, on retournera None pour les dictionnaires dist et L.

def floyd warshall topdown toutes paires(G):
L = {}
def £ rec(k,a,b):

return L[(k,a,b)]

n = len(G)
dist = {}
try:

Calcul des distances par récurrence top-down

return (dist,False,L)
except:
return (None,True,None)

Tester : >>> floyd_warshall_topdown_toutes_paires(graphe_neg)
>>> (None, True, None)
>>> dist,cycle_negatif,L = floyd_warshall_topdown_toutes_paires(graphe)
>>> cycle_negatif
False
>>> dist[(1,5)]
5
>>> AfficheTable(L, graphe)

Table de programmation dynamique Floyd-Warshall

k=1

Origine (v)
Origine (v)

Destination (w) Destination (w) Destination (w)
k=3 k=4 k=5

Origine (v)
Origine (v)

Destination (w) Destination (w) Destination (w)

TD : PROGRAMMATION DYNAMIQUE - FLOYD-WARSHALL

3. Questions théoriques.
a) Quelle est la complexité temporelle du top-down dans le pire des cas ?
b) Pourquoi, lorsqu’on ne calcule qu’une seule paire, le nombre d’états mémorisés peut
étre strictement inférieur a O(n3) ?
c) Le cours précise qu’on peut détecter un cycle négatif « au fur et a mesure » en top-
down mais qu’on ne peut pas conclure « pas de cycle négatif » tant qu’on n’a pas forcé le
calcul des diagonales pertinentes. Expliquer.

Ill) RECONSTRUCTION D’UN CHEMIN OPTIMAL

Une fois les valeurs L[(k,v,w)] calculées (par bottom-up ou top-down complet), on veut
reconstruire un plus court chemin de v vers w. On suit le principe du cours : a partir de
(n,v,w), on teste si la valeur « hérite » de k-1 ou si k est un sommet intermédiaire.

1. Ecrire une fonction decision_reconstruction(L, k, v, w).
Cette fonction retourne une information sur la décision au niveau (k, v, w) :
- soit « HERITER » si L[(k, v, w)] == L[(k-1, v, w)] ;
- soit « DECOMPOSER » si L[(k, v, w)] == L[(k-1, v, k)] + L[(k-1, k, w)].

2. Ecrire une fonction rec_chemin(L, k, v, w).
Fonction récursive de reconstruction :
o SiL[(k, v, w)] == np.inf, retourner []
e Sik==0, renvoyer le chemin direct [v, w]
e Si« HERITER », on descend a k-1
e Si« DECOMPOSER », on reconstruit v— k puis k — w récursivement et on les
concaténe en évitant de dupliquer k.

Tester : >>> rec_chemin(L,0,1,3) # Chemin 1 —» 3

[1, 3]

>>> rec_chemin(L,1,1,3)

[1, 3]

>>> rec_chemin(L,2,1,3)

[1, 2, 3]

>>> rec_chemin(L,3,1,3)

[1, 2, 3]

>>> rec_chemin(L,0,1,4) # Chemin 1 — 4
[]

>>> rec_chemin(L,1,1,4)

[]

>>> rec_chemin(L,2,1,4)

[1, 2, 4]

>>> rec_chemin(L,3,1,4)

[1, 2, 4]

>>> rec_chemin(L,4,1,4)

[1, 2, 4]

3. Questions théoriques.
a) Pourquoi la reconstruction d’'un chemin est en O(n) dans le pire cas ?
b) Pourquoi reconstruire tous les chemins (toutes paires) peut colter O(n3) au total ?

TD : PROGRAMMATION DYNAMIQUE - FLOYD-WARSHALL

RAPPELS THEORIQUES

Formulation du probleme

Soit un graphe orienté G = (V, E) avec n sommets et m arétes, ou chaque aréte e possede
une longueur réelle €. (possiblement négative). On cherche a calculer pour chaque paire de
sommets (v, w) la distance minimale dist(v, w).

Sous-problémes et notation

On note Lgyw la longueur minimale d'un chemin sans cycle de v vers w utilisant uniguement
les sommets {1, 2, ..., k} comme sommets intermédiaires. Si aucun tel chemin n'existe, on
pose Lky,w = +0.

Relation de récurrence
Pourtoutk €{1, 2, .., nfetv,wEV:

Lk—l,v,w (CClS Tlol)
Ly yw = min
L1k + Li-1pew (cas n°2)
Cas de base
Cas de base (k=0) :
- Lovyv =0 (cheminvide);
- Lovw =28y wsil'aréte (v, w) existe ;
- Loyw =+c0sinon

Détection de cycle négatif

Le graphe contient un cycle négatif si et seulement si, a la fin de I'algorithme, on a Loy <0
pour un certain sommetv € V.

Algorithme de reconstruction

Une fois la table des valeurs optimales remplie, on reconstruit le chemin en « remontant »
depuis le probleme (n, v, w) jusqu'a k = 0.

A chaque position (k, v, w), on détermine quelle décision a permis d'obtenir Liyw :
- Si Lky,w == Lk-1,v,w — Héritage (k non utilisé)
- Sinon, le sommet k fait partie du chemin optimal. On reconstruit v — k puis k > w
récursivement et on concaténe ces deux chemins.

